Monday, 27 March 2017

Increasing Number Of Periods In Moving Average

Zeitreihenmethoden Zeitreihenmethoden sind statistische Verfahren, die historische Daten nutzen, die über einen bestimmten Zeitraum akkumuliert wurden. Zeitreihen-Methoden gehen davon aus, dass das, was in der Vergangenheit aufgetreten ist, auch in Zukunft vorkommt. Wie der Name der Zeitreihe andeutet, beziehen diese Methoden die Prognose nur auf einen Faktor - Zeitpunkt. Dazu gehören der gleitende Durchschnitt, die exponentielle Glättung und die lineare Trendlinie, und sie gehören zu den beliebtesten Methoden für die kurzfristige Prognose von Service - und Produktionsunternehmen. Diese Methoden gehen davon aus, dass sich identifizierbare historische Muster oder Trends für die Nachfrage im Laufe der Zeit wiederholen werden. Moving Average Eine Zeitreihenprognose kann so einfach sein wie die Nachfrage in der aktuellen Periode, um die Nachfrage in der nächsten Periode vorherzusagen. Dies wird manchmal als naive oder intuitive Prognose bezeichnet. 4 Wenn die Nachfrage zum Beispiel 100 Einheiten in dieser Woche beträgt, beträgt die Prognose für die nächste Wochen-Nachfrage 100 Einheiten, wenn die Nachfrage zu 90 Einheiten stattdessen ausfällt, dann sind die folgenden Wochen die Nachfrage 90 Einheiten und so weiter. Diese Art der Prognosemethode berücksichtigt nicht das historische Nachfrageverhalten, sondern nur die Nachfrage in der aktuellen Periode. Es reagiert direkt auf die normalen, zufälligen Bewegungen in der Nachfrage. Die einfache gleitende Durchschnittsmethode verwendet in der jüngsten Vergangenheit mehrere Bedarfswerte, um eine Prognose zu entwickeln. Dies neigt dazu, die zufälligen Zunahmen und Abnahmen einer Prognose, die nur eine Periode verwendet, zu dämpfen oder zu glätten. Die einfache gleitende Durchschnitt ist nützlich für die Prognose der Nachfrage, die stabil ist und zeigt keine ausgeprägte Nachfrage Verhalten, wie ein Trend-oder saisonale Muster. Bewegungsdurchschnitte werden für bestimmte Zeiträume berechnet, wie z. B. drei Monate oder fünf Monate, je nachdem, wie viel der Prognostiker wünscht, die Bedarfsdaten zu glätten. Je länger der gleitende Durchschnitt, desto glatter ist er. Die Formel für die Berechnung der einfachen gleitenden Durchschnitt ist Computing ein einfaches Moving Average Die Instant Paper Clip Office Supply Company verkauft und liefert Bürobedarf an Unternehmen, Schulen und Agenturen innerhalb eines 50-Meile Radius seines Lagers. Das Büro-Supply-Geschäft ist wettbewerbsfähig, und die Fähigkeit, Aufträge zeitnah zu liefern, ist ein Faktor, neue Kunden zu gewinnen und alte zu halten. (Büros in der Regel nicht, wenn sie auf niedrige Lieferungen laufen, aber wenn sie völlig ausgehen, so dass sie ihre Aufträge sofort benötigen.) Der Manager des Unternehmens will sicher sein, genug Fahrer und Fahrzeuge zur Verfügung stehen, um Aufträge umgehend zu liefern und Sie haben ausreichende Bestände auf Lager. Daher möchte der Manager in der Lage sein, die Anzahl der Aufträge, die während des nächsten Monats auftreten werden, zu prognostizieren (d. h. die Nachfrage nach Lieferungen vorauszusagen). Aus den Aufzeichnungen der Zustellungsaufträge hat das Management die folgenden Daten für die letzten 10 Monate akkumuliert, aus denen er 3- und 5-Monats-Bewegungsdurchschnitte berechnen möchte. Nehmen wir an, daß es Ende Oktober ist. Die Prognose, die sich aus dem 3- oder 5-monatigen gleitenden Durchschnitt ergibt, liegt typischerweise für den nächsten Monat in der Sequenz, die in diesem Fall November ist. Der gleitende Durchschnitt wird aus der Nachfrage nach Aufträgen für die vorangegangenen 3 Monate in der Sequenz gemäß folgender Formel berechnet: Der gleitende 5-Monatsdurchschnitt wird aus den vorherigen 5 Monaten der Bedarfsdaten wie folgt berechnet: Der 3- und der 5-Monats-Zeitraum Gleitende Durchschnittsprognosen für alle Monate der Nachfragedaten sind in der folgenden Tabelle dargestellt. Eigentlich würde nur die Prognose für November, die auf der letzten monatlichen Nachfrage basiert, vom Manager verwendet werden. Allerdings erlauben es die früheren Prognosen für die Vormonate, die Prognose mit der tatsächlichen Nachfrage zu vergleichen, um zu sehen, wie genau die Prognosemethode ist - das heißt, wie gut es funktioniert. Drei - und Fünfmonatsdurchschnitte Beide gleitenden Durchschnittsprognosen in der obigen Tabelle neigen dazu, die Variabilität, die in den tatsächlichen Daten auftritt, zu glätten. Dieser Glättungseffekt ist in der folgenden Abbildung zu sehen, in der die 3-Monats - und die 5-Monats-Durchschnittswerte einem Diagramm der ursprünglichen Daten überlagert wurden: Der gleitende 5-Monatsdurchschnitt in der vorherigen Abbildung glättet Schwankungen in einem größeren Ausmaß als Der dreimonatige Gleitende Durchschnitt. Der 3-Monats-Durchschnitt spiegelt jedoch die jüngsten Daten, die dem Büromaterial-Manager zur Verfügung stehen, stärker wider. Im Allgemeinen sind die Prognosen, die den längerfristigen gleitenden Durchschnitt verwenden, langsamer, um auf die jüngsten Veränderungen in der Nachfrage zu reagieren als diejenigen, die unter Verwendung kürzerer Periodenbewegungsdurchschnitte durchgeführt wurden. Die zusätzlichen Datenperioden dämpfen die Geschwindigkeit, mit der die Prognose antwortet. Die Festlegung der geeigneten Anzahl von Perioden, die in einer gleitenden Durchschnittsprognose verwendet werden müssen, erfordert oft ein gewisses Maß an Versuchs - und Fehlerversuchen. Der Nachteil der gleitenden Durchschnittsmethode ist, dass sie nicht auf Variationen reagiert, die aus einem Grund auftreten, wie z. B. Zyklen und saisonale Effekte. Faktoren, die Änderungen verursachen, werden in der Regel ignoriert. Es handelt sich grundsätzlich um eine mechanische Methode, die historische Daten konsistent widerspiegelt. Die gleitende Durchschnittsmethode hat jedoch den Vorteil, einfach zu bedienen, schnell und relativ kostengünstig zu sein. In der Regel kann diese Methode eine gute Prognose für die kurze Laufzeit, aber es sollte nicht zu weit in die Zukunft geschoben werden. Gewichteter gleitender Durchschnitt Die gleitende Durchschnittsmethode kann so angepasst werden, dass sie stärkere Fluktuationen in den Daten widerspiegelt. Bei der gewichteten gleitenden Durchschnittsmethode werden die Gewichte den letzten Daten entsprechend der folgenden Formel zugewiesen: Die Bedarfsdaten für PM Computer Services (gezeigt in der Tabelle für Beispiel 10.3) scheinen einem zunehmenden linearen Trend zu folgen. Das Unternehmen möchte eine lineare Trendlinie berechnen, um zu sehen, ob es genauer als die in den Beispielen 10.3 und 10.4 entwickelten exponentiellen Glättungs - und angepassten exponentiellen Glättungsvorhersagen ist. Die für die Berechnung der kleinsten Quadrate benötigten Werte sind wie folgt: Unter Verwendung dieser Werte werden die Parameter für die lineare Trendlinie wie folgt berechnet: Daher wird die lineare Trendliniengleichung berechnet, um eine Prognose für die Periode 13 zu berechnen, wobei x & sub3; Trendlinie: Die folgende Grafik zeigt die lineare Trendlinie im Vergleich zu den Istdaten. Die Trendlinie scheint die tatsächlichen Daten genau zu reflektieren - also gut zu passen - und wäre somit ein gutes Prognosemodell für dieses Problem. Ein Nachteil der linearen Trendlinie besteht jedoch darin, dass sie sich nicht an eine Trendänderung anpasst, da die exponentiellen Glättungsprognosemethoden voraussetzen, dass alle zukünftigen Prognosen einer Geraden folgen werden. Dies beschränkt die Verwendung dieser Methode auf einen kürzeren Zeitrahmen, in dem Sie relativ sicher sein können, dass sich der Trend nicht ändert. Saisonale Anpassungen Ein saisonales Muster ist eine repetitive Zunahme und Abnahme der Nachfrage. Viele Nachfrageartikel zeigen saisonales Verhalten. Bekleidungsverkäufe folgen jährlichen Jahreszeitmustern, mit der Nachfrage nach warmer Kleidung, die im Fall und im Winter und im Frühjahr und Sommer abnimmt, während die Nachfrage nach kühlerer Kleidung zunimmt. Die Nachfrage nach vielen Einzelteilen, einschließlich Spielwaren, Sportausrüstung, Kleidung, elektronische Geräte, Schinken, Truthähne, Wein und Obst, während der Ferienzeit erhöhen. Grußkarte Nachfrage steigt in Verbindung mit besonderen Tagen wie Valentinstag und Muttertag. Saisonale Muster können auch auf einer monatlichen, wöchentlichen oder sogar täglichen Basis auftreten. Einige Restaurants haben höhere Nachfrage am Abend als am Mittag oder am Wochenende im Gegensatz zu Wochentagen. Verkehr - also Verkäufe - an den Einkaufszentren nimmt Freitag und Samstag auf. Es gibt mehrere Methoden, um saisonale Muster in einer Zeitreihenprognose zu reflektieren. Wir beschreiben eine der einfacheren Methoden mit einem saisonalen Faktor. Ein saisonaler Faktor ist ein numerischer Wert, der mit der normalen Prognose multipliziert wird, um eine saisonbereinigte Prognose zu erhalten. Eine Methode zur Entwicklung einer Nachfrage nach saisonalen Faktoren besteht darin, die Nachfrage pro Saison nach der folgenden Formel aufzuteilen: Die daraus resultierenden saisonalen Faktoren zwischen 0 und 1,0 sind tatsächlich der Anteil der Gesamtjahresnachfrage jede Saison. Diese saisonalen Faktoren werden mit der jährlichen prognostizierten Nachfrage multipliziert, um prognostizierte Prognosen für jede Saison zu erzielen. Berechnung einer Prognose mit saisonalen Anpassungen Wishbone Farms wächst Truthähne zu einem Fleisch-Verarbeitung Unternehmen das ganze Jahr verkaufen. Allerdings ist seine Hauptsaison offensichtlich im vierten Quartal des Jahres, von Oktober bis Dezember. Wishbone Farms hat in den folgenden drei Jahren die Nachfrage nach Truthühnern erlebt: Weil wir drei Jahre Nachfragedaten haben, können wir die saisonalen Faktoren berechnen, indem wir die gesamte vierteljährliche Nachfrage für die drei Jahre durch die Gesamtnachfrage in allen drei Jahren dividieren : Als nächstes wollen wir die prognostizierte Nachfrage für das nächste Jahr, 2000, mit jedem der saisonalen Faktoren multiplizieren, um die prognostizierte Nachfrage für jedes Quartal zu erhalten. Um dies zu erreichen, benötigen wir eine Nachfrageprognose für 2000. Da in diesem Fall die Nachfragedaten in der Tabelle einen allgemein ansteigenden Trend aufweisen, berechnen wir eine lineare Trendlinie für die drei Jahre der Daten in der Tabelle, um eine grobe zu erhalten Prognose Schätzung: So ist die Prognose für das Jahr 2000 58,17 oder 58,170 Puten. Anhand dieser jährlichen Bedarfsprognose werden die saisonbereinigten Prognosen SF i für das Jahr 2000 verglichen, wenn diese vierteljährlichen Prognosen mit den tatsächlichen Bedarfswerten in der Tabelle verglichen werden. Sie scheinen relativ gute Prognoseschätzungen zu sein, die sowohl die saisonalen Schwankungen der Daten widerspiegeln als auch Der allgemeine Aufwärtstrend. 10-12. Wie ist die gleitende Durchschnittsmethode ähnlich der exponentiellen Glättung 10-13. Welche Auswirkung auf das exponentielle Glättungsmodell wird die Glättungskonstante erhöhen, haben 10-14. Wie sich die eingestellte exponentielle Glättung von der exponentiellen Glättung 10-15 unterscheidet. Was die Wahl der Glättungskonstante für den Trend in einem angepassten exponentiellen Glättungsmodell 10-16 bestimmt. In den Kapitelbeispielen für Zeitreihenmethoden wurde die Ausgangsprognose immer als die tatsächliche Nachfrage in der ersten Periode angenommen. Schlagen Sie weitere Möglichkeiten vor, dass die Startprognose tatsächlich ermittelt werden kann. 10-17. Wie unterscheidet sich das lineare Trendlinien-Prognosemodell von einem linearen Regressionsmodell für die Prognose 10-18. Von den in diesem Kapitel vorgestellten Zeitreihenmodellen, einschließlich dem gleitenden Mittelwert und dem gewichteten gleitenden Durchschnitt, der exponentiellen Glättung und der angepassten exponentiellen Glättung und der linearen Trendlinie, welche halten Sie für den besten Warum 10-19. Welche Vorteile hat eine angepasste exponentielle Glättung über eine lineare Trendlinie für die prognostizierte Nachfrage, die einen Trend aufweist 4 K. B. Kahn und J. T. Mentzer, Prognose in Consumer and Industrial Markets, The Journal of Business Forecasting 14, No. 2 (Sommer 1995): 21-28.Chapters Vier (MC und T / F) Welche zwei Zahlen sind im täglichen Report zum CEO von Walt Disney Parks amp Resorts betreffend die sechs Orlando Parks enthalten a. Gestern prognostizierte Anwesenheit und gestern Präsenz b. Gestern und heute vorausgesagte Teilnahme c. Gestern prognostizierte Anwesenheit und heute prognostizierte Anwesenheit d. Gestern und Anwesenheit der letzten Jahre e. Gestern prognostizierte Anwesenheit und die jährliche durchschnittliche tägliche Prognosefehler Eine sechstündige gleitende durchschnittliche Prognose ist besser als eine dreimonatige gleitende durchschnittliche Prognose, wenn Nachfrage a. Ist ziemlich stabil b. Hat sich aufgrund der jüngsten Werbebemühungen geändert c. Folgt einem Abwärtstrend d. Folgt einem saisonalen Muster, das sich zweimal jährlich wiederholt. Folgt einem Aufwärtstrend Bei einer gegebenen Produktnachfrage beträgt die Zeitreihen-Trendgleichung 53 - 4 X. Das negative Vorzeichen auf der Steigung der Gleichung a. Ist eine mathematische Unmöglichkeit b. Ist ein Hinweis darauf, dass die Prognose voreingenommen ist, wobei die Prognosewerte unter den tatsächlichen Werten liegen c. Ist ein Indiz dafür, dass die Produktnachfrage rückläufig ist. Dass der Bestimmungskoeffizient auch negativ ist. Impliziert, dass die RSFE negativ ist. Welche der folgenden Aussagen gilt für die beiden Glättungskonstanten des Prognoseinschluss-Modells (FIT) Modell a. Eine Konstante ist positiv, die andere negativ. B. Sie werden MAD und RSFE genannt. C. Alpha ist immer kleiner als Beta. D. Eine Konstante glättet den Regressionsabschnitt, während der andere die Regressionssteigung glättet. D. h. Ihre Werte werden unabhängig bestimmt. Die Nachfrage nach einem bestimmten Produkt wird auf 800 Einheiten pro Monat geschätzt, gemittelt über alle 12 Monate des Jahres. Das Produkt folgt einem saisonalen Muster, für das der Januar-Monatsindex 1,25 beträgt. Was ist die saisonbereinigte Umsatzprognose für Januar a. 640 Einheiten b. 798,75 Einheiten c. 800 Einheiten d. 1000 Stück e. Kann nicht mit den angegebenen Informationen berechnet werden Ein Saisonindex für eine monatliche Serie wird auf der Grundlage von drei Jahren Akkumulation von Daten berechnet werden. Die drei vorhergehenden Juli Werte waren 110, 150 und 130. Der Durchschnitt über alle Monate ist 190. Der ungefähre saisonale Index für Juli ist ein. 0,487 b. 0,684 c. 1,462 d. 2,053 e. Kann nicht mit den angegebenen Informationen berechnet werden. Moving Averages: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (gemeinhin in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Sobald dies bestimmt ist, wird der daraus resultierende Mittelwert auf eine Tabelle aufgetragen, um es den Händlern zu ermöglichen, auf geglättete Daten zu schauen, anstatt sich auf die täglichen Preisschwankungen zu konzentrieren, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, der als einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel eines gegebenen Satzes von Werten genommen wird. Um beispielsweise einen gleitenden 10-Tage-Durchschnitt zu berechnen, würden Sie die Schlusskurse der letzten 10 Tage addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu geben, wie ein Vermögenswert im Verhältnis zu den vergangenen 10 Tagen bewertet wird. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig, um neue Daten, wie er verfügbar wird, zu berücksichtigen. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Informationen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort fortsetzt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie bei der Schaffung der durchschnittlichen wollen. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Durchschnitte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: Wie Sie sie verwenden


No comments:

Post a Comment